
Unordered multinomial response
models



Multilevel multinomial models

We have seen how logistic (and other) models handle the situation
where we have a binary response (two response categories e.g.
alive/dead or pass/fail).

Where we have a response variable with more than two categories
we use multinomial models.

Two types of multinomial response:

Unordered
e.g. voting preference (Labour, Tory, Lib Dem, Other)
cause of death

Ordered
e.g. attitude scales (strongly disagree,. . . ,strongly agree)
exam grades

First we deal wtih unordered multinomial responses



Example: British Election Study

We will be using data from the British Election Study to illuminate
our explanation and provide some examples. First we provide some
brief information on UK politics to put this in context.

The UK is divided into areas called constituencies, with each
constituency electing one MP to a seat.

There are 3 main parties, Conservative (also known as Tory),
Labour and Liberal Democrat (often shortened to Lib Dem). In
recent years it has always been the Conservatives or Labour who
have won the greatest number of seats, with the Liberal
Democrats coming third.

There are other parties but to simplify the data for this example we
have discarded all individuals who did not vote for one of these
three parties.



Extending a binary to a multinomial model

Take a binary variable (yi ) which is 1 if an individual votes Tory
and 0 otherwise.

The underlying probability of individual i voting Tory is πi .

We model the log odds of voting Tory as a function of explanatory
variables

log

(
πi

1− πi

)
= β0 + β1x1i + . . . (1)

Let’s change notation:
the probability of individual i voting Tory, πi , becomes π1i and
the probability of individual i not voting Tory, 1− πi , becomes π2i .

We can now write (1) as

log

(
π1i

π2i

)
= β0 + β1x1i + . . .



Moving to more than two response categories

Suppose now that yi can take three values,
{1 = vote Tory, 2 = vote Labour, 3 = vote Lib Dem}. Now

π1i is the probability that individual i votes Tory
π2i is the probability that individual i votes Labour
π3i is the probability that individual i votes Lib Dem

Now we must choose a reference category, say voting Lib Dem,
and model the log odds of all remaining categories against the
reference category. Therefore with m categories we need m − 1
equations to model this set of log odds ratios. In our case

log

(
π1i

π3i

)
= β0 + β1x1i + . . .

log

(
π2i

π3i

)
= β2 + β3x1i + . . .

Note that in the 2 category example on the previous slide our
reference category was not voting Tory.



Notation

The MLwiN software uses the notation

log (π1i/π3i ) =β0 + β1x1i + . . .

log (π2i/π3i ) =β2 + β3x1i + . . .
...

Often in papers you will see the more succinct notational form

log

(
π

(s)
i

π
(t)
i

)
= β

(s)
0 + β

(s)
1 x1i + . . . , s = 1, . . . , t − 1, t + 1, . . . ,m

Which becomes

For s = 1
log
(
π

(1)
i /π

(3)
i

)
= β

(1)
0 + β

(1)
1 x1i + . . .

For s = 2
log
(
π

(2)
i /π

(3)
i

)
= β

(2)
0 + β

(2)
1 x1i + . . .



Interpretation (odds ratios)

We can interpret as with logistic regression. In the political
example, {1 = vote Tory, 2 = vote Labour, 3 = vote Lib Dem}.

log (π1i/π3i ) = β0 + β1x1i + . . .

log (π2i/π3i ) = β2 + β3x1i + . . .

β1 is the change in the log odds of voting Tory as opposed to Lib
Dem for a 1 unit increase in x1.

β3 is the change in the log odds of voting Labour as opposed to
Lib Dem for a 1 unit increase in x1.

and exp (βk) gives the change in odds ratios for a 1 unit increase in
x1 (k = 1, 3)



Example: the British Election Study

Response is voted (1=Tory, 2=Labour, 3=Lib Dem) in 1997.
Sample of 1559 voters from 186 constituencies

Let’s look at how the log odds of voting Tory vs. Lib Dem and
Labour vs. Lib Dem change as functions of age (centred around 49
years).

Model Results

log(π1i/π3i ) = β0 + β1(age− 49)i
β0 = 0.262 (0.056)
β1 = 0.006 (0.003)

log(π2i/π3i ) = β2 + β3(age− 49)i
β2 = 0.704 (0.051)
β3 = -0.008 (0.003)

So log(odds) of voting Tory vs. Lib Dem increase by 0.006 for
every additional year
So log(odds) of voting Labour vs. Lib Dem decrease by 0.008 for
every additional year



Graph of log odds as a function of age



Interpretation (probabilities)

Probability of voting Tory for
individual i

π1i =
e(β0+β1x1i )

1 +
(
e(β0+β1x1i ) + e(β2+β3x1i )

)
Probability of voting Labour for
individual i

π1i =
e(β2+β3x1i )

1 +
(
e(β0+β1x1i ) + e(β2+β3x1i )

)
Probability of voting Liberal
Democrat for individual i

π3i = 1 = π2i − π1i

log (π1i/π3i ) = β0 + β1x1i + . . .

log (π2i/π3i ) = β2 + β3x1i + . . .

Or in general notation:

π
(s)
i =

e

(
β

(s)
0 +β

(s)
1 x1i

)
1 +

∑t−1
k=1 e

(
β

(k)
0 +β

(k)
1 x1i

)

π
(t)
i = 1−

t−1∑
k=1

π
(k)
i

Note that MLwiN will do this
transformation for you



Graph of probabilities as a function of age

Looking at probabilities of voting for each party as a function of
age gives



Multilevel multinomial models

Suppose the individuals in the voting example are clustered into
constituencies and we wish to include constituency effects in our
model. We include intercept level residuals for each log odds
equation in our model

log

(
π1ij

π3ij

)
= β0 + β1x1ij + u0j

log

(
π2ij

π3ij

)
= β2 + β3x1ij + u2j

u0j is the effect of the constituency j on the log odds of voting
Tory as opposed to Lib Dem. So if u0j is 1 the log odds of voting
Tory as opposed to Lib Dem increase by 1 compared to a
constituency where u0j = 0 (the average constituency).

Likewise u2j is the effect of constituency j on the log odds of
voting Labour as opposed to Lib Dem.



Variance of level 2 random effects

log (π1ij/π3ij) = β0 + u0j + β1x1ij

log (π2ij/π3ij) = β2 + u2j + β3x1ij

[
u0j

u2j

]
∼ N(0,Ωu) Ωu =

[
σ2

u0

σu02 σ2
u2

] σ2
u0 is the between

constituency variance of
the (vote Tory):(vote Lib
Dem) log odds ratio

σ2
u2 is the between constituency variance of the (vote

Labour):(vote Lib Dem) log odds ratio

σu02 is the covariance between Tory and Labour constituency level
effects. A negative covariance means that in constituencies where
Labour do well compared to Lib Dems, Tories tend to do badly
compared to Lib Dems and vice versa. A positive covariance means
that in constituencies where Labour do well compared to Lib
Dems, Tories also tend to do well.



Multilevel model of voting behaviour

Model

log
(
π1ij/π3ij

)
= β0 + u0j + β1x1ij

log
(
π2ij/π3ij

)
= β2 + u2j + β3x1ij

[
u0j

u2j

]
∼ N(0,Ωu) Ωu =

[
σ2

u0
σu02 σ2

u2

]

Results

β0 = 0.580 (0.093) β1 = 0.005 (0.003)

β2 = 1.112 (0.126) β3 = -0.008 (0.003)

σ2
u0 = 0.836 (0.156)

σu02 = 0.778 (0.157) σ2
u2 = 1.755 (0.288)

For (age− 49) = 0, we have log(Tory:Lib Dem)=0.58, however
between constituency variation is 0.836, so 95% range for this log
odds is 0.58± (

√
0.836× 1.96) = (−1.22, 2.37) which corresponds

to an odds range (by exponentiating) of (0.3, 10.67)

And for log(Labour:Lib Dem) at (age− 49) = 0 we have
1.112± (

√
1.755× 1.96) = (−1.53, 3.8) which corresponds to an

odds range of (0.21, 44.7)

So there is a great deal of between constituency variation



Between constituency variation in odds ratios

Based on shrunken constituency-level residuals


